Dalam Gambar 2., bentuk level set dari integral (13) yang diplot diper terjemahan - Dalam Gambar 2., bentuk level set dari integral (13) yang diplot diper Inggris Bagaimana mengatakan

Dalam Gambar 2., bentuk level set d

Dalam Gambar 2., bentuk level set dari integral (13) yang diplot diperoleh dengan memilih nilai parameter (a 0 , a 1 , b 0 , b 1 ) = (4, 0.7, 0.5, 1.0) (Gambar 2. atas-kiri) dan (a 0 , a 1 , b 0 , b 1 ) = (4, −0.875, 0.5, 1.0) (Gambar 2. atas-kanan). Sedangkan untuk diagram bifurkasi diperoleh disekitar titik 2-periodik (x, y) = (−1, 1) untuk pilihan nilai parameter a 0 = 4, (b 0 , b 1 ) = (0.5, 1.0), dan a 1 ∈ (−3, 0) (Gambar 2. bawah-kiri) dan disekitar titik tetap (x, y) = (1, 1) untuk
pilihan nilai parameter a 0 = 4, (b 0 , b 1 ) = (0.5, 1.0), dan a 1 ∈ (−1, 2) (Gambar 2. bawah-kanan). Keadaan dinamik, sebagai contoh untuk pilihan nilai parameter a 0 = 4 dan a 1 = 0.7, titik 2-periodik (x, y) = (−1, 1) dari sistem (13) bertipe centre dan kurva solusinya tertutup sebagaimana terlihat dalam Gambar 2 (atas-kiri). Oleh karena itu titik 2-periodik stabil. Sebaliknya, untuk pilihan nilai parameter yang sama, titik tetap (x, y) = (1, 1) bertipe sadle. Oleh karena itu titik tetap (x, y) = (1, 1) tidak stabil. Sedangkan untuk keadaan dinamik dengan pilihan nilai parameter a 0 = 4 dan a 1 = −0.875, titik tetap (x, y) = (1, 1) dari sistem (13) bertipe centre dan kurva solusinya tertutup sebagaimana terlihat dalam Gambar 2 (atas-kanan). Oleh karena itu titik tetap stabil. Sebaliknya, untuk pilihan nilai parameter yang sama, titik 2-periodik (x, y) = (−1, 1) bertipe sadle. Oleh karena itu titik 2-periodik (x, y) = (−1, 1) tidak stabil.
0/5000
Dari: -
Ke: -
Hasil (Inggris) 1: [Salinan]
Disalin!
In Figure 2, the shape of the level sets of integral (13) who plotted retrieved by selecting parameter values (a 0, a is 1, b 0, b 1) = (4, 0.7, 0.5, 1.0) (Figure 2-a top-left) and (a 0, a is 1, b 0, b 1) = (4 − 0.875, 0.5, 1.0) (Figure 2-a top-right). As for the vicinity of the point of bifurcation diagram obtained 2-periodic (x, y) = (−1, 1) to the option value of parameters a 0 = 4, (b 0, b 1) = (0.5, 1.0), and a 1 ∈ (−3, 0) (Figure 2-a bottom-left) and the vicinity of a fixed point (x, y) = (1, 1) forthe option value of parameters a 0 = 4, (b 0, b 1) = (0.5, 1.0), and a 1 ∈ (−1, 1) (fig 2. below-right). Dynamic circumstances, for example for the selection of the value of the parameters a 0 = 4 and a = 0.7, 1 two-point with (x, y) = (−1, 1) from the system (13) type of solution curves and closed as seen in Figure 2 (top-left). Therefore point 2-periodic stable. Instead, for the same parameter value options, a fixed point (x, y) = (1, 1) type sadle. Therefore a fixed point (x, y) = (1, 1) is not stable. As for the dynamic State with a choice of parameter values with 0 = 4 and a = − 1 0.875, a fixed point (x, y) = (1, 1) from the system (13) type of solution curves and closed as seen in Figure 2 (top-right). Therefore the point remains stable. Instead, for the same parameter value options, point 2-periodic (x, y) = (−1, 1) type sadle. Therefore 2-periodic point (x, y) = (−1, 1) is not stable.
Sedang diterjemahkan, harap tunggu..
Hasil (Inggris) 2:[Salinan]
Disalin!
In Figure 2, the form level set of integral (13) is plotted obtained by selecting parameter values ​​(a 0, a 1, b 0, b 1) = (4, 0.7, 0.5, 1.0) (Figure 2. The upper-left ) and (a 0, a 1, b 0, b 1) = (4, -0875, 0.5, 1.0) (Figure 2. The upper-right). As for the bifurcation diagram obtained around the 2-periodic point (x, y) = (-1, 1) for selection of parameter values ​​a 0 = 4, (b 0, b 1) = (0.5, 1.0), and a 1 ∈ ( -3, 0) (Fig 2. The bottom-left) and around the fixed point (x, y) = (1, 1) for
selection of parameter values ​​a 0 = 4, (b 0, b 1) = (0.5, 1.0) , and a 1 ∈ (-1, 2) (Figure 2 bottom-right). Dynamic state, as an example for the selection of parameter values ​​a 0 = 4 and a 1 = 0.7, 2-periodic point (x, y) = (-1, 1) of the system (13) of type center and a closed solution curve as shown in Figure 2 (top-left). Therefore, point 2-periodic stable. Conversely, for the same selection parameter values, fixed point (x, y) = (1, 1) type sadle. Therefore the fixed point (x, y) = (1, 1) unstable. As for the dynamic state with a choice of parameter values ​​0 = 4 and a 1 = -0875, fixed point (x, y) = (1, 1) of the system (13) of type center and a closed solution curve as shown in Figure 2 (top -Right). Therefore, the point remains stable. Conversely, for the same selection parameter value, 2-periodic point (x, y) = (-1, 1) type sadle. Therefore the 2-periodic point (x, y) = (-1, 1) unstable.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: